
Failure-directed Search for Constraint-based
Scheduling

Petr Vilím, Philippe Laborie, Paul Shaw

IBM

July 12, 2015

Petr Vilím, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 1/32

Outline�

Why we developed it

Inspiration

How it works

Experimental results

Why it works well?

Petr Vilím, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 2/32

Why we developed failure-directed search�

Automatic search in CP Optimizer for scheduling used to be:

I Portfolio based.
I Initial solution(s): portfolio of SetTimes searches.
I Optimization: Large Neighbourhood Search (LNS).
I Proof of optimality: almost nothing.

The problem:

I We were satisfied with performance of the LNS.
I But for small and medium sized problems, we needed

something in the portfolio to finish the search by a proof of
optimality.

I We needed a generic plan B when LNS is stuck.

Petr Vilím, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 3/32

Plan B approach�

Start plan B one when LNS is not improving the solution any more.

Assumptions:

I There probably isn’t any (better) solution.
I If there is one, it is very hard to find.
I It is necessary to explore the whole search space.

Consequences:

I Failure-directed search was tuned on infeasible problems.
I We gave up on leading the search towards a solution.

I If a solution is found, it is by an accident.

I The search can perform badly when the gap is still big.

Petr Vilím, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 4/32

Inspiration from CP
(and SAT)

State-of-the-art generic search in CP�

I Impact-based search
I Weighted-degree heuristics
I Activity-based search

The main idea:

I Choose the most interesting variable
I Assign the most promising value to it

x = 10 x , 10

Other ingredients:

I Periodic restarts (geometric, luby, ...)
I Nogood learning (from restarts)

Petr Vilím, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 6/32

Impact-based search�

Search space estimation:

P =

 0 if infeasible
|Dx1 | × · · · × |Dxn | otherwise

Impact of an assignment:

I(xi = a) = 1 −
Pafter

Pbefore
bigger is better

Average impact of an assignment:

I(xi = a) =
1
|K|

∑
k∈K

Ik(x = a)

Impact of a variable:

I(xi) =
∑
a∈Di

(1 − I (xi = a))

Petr Vilím, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 7/32

Impact-based search�

Choose variable
I with the maximum impact (depends on current domain)

I to treat hard-to-assign variables first.

Choose value
I with the smallest impact

I to maximize chances of extending current partial assignment
to a solution.

Petr Vilím, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 8/32

Restarts�

I Restarting allows to reconsider decisions made at the top of
the search tree.

I Without nogood recording, the search may duplicate some
work.

Petr Vilím, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 9/32

Nogood recording�

δ1

δ2 ¬δ2

δ3 ¬δ3

δ4 ¬δ4

δ5 ¬δ5

δ6 ¬δ6

δ7 ¬δ7 δ8

δ9 ¬δ9

δ10 ¬δ10 δ11 ¬δ11

Nogoods:

I ¬δ1 ∨ ¬δ2

I ¬δ1 ∨ ¬δ6

I ¬δ1∨¬δ8∨¬δ9

I ¬δ1∨¬δ8∨¬δ11

Petr Vilím, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 10.1/32

Nogood recording�

δ1

δ2 ¬δ2

δ3 ¬δ3

δ4 ¬δ4

δ5 ¬δ5

δ6 ¬δ6

δ7 ¬δ7 δ8

δ9 ¬δ9

δ10 ¬δ10 δ11 ¬δ11

Nogoods:
I ¬δ1 ∨ ¬δ2

I ¬δ1 ∨ ¬δ6

I ¬δ1∨¬δ8∨¬δ9

I ¬δ1∨¬δ8∨¬δ11

Petr Vilím, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 10.2/32

Nogood recording�

δ1

δ2 ¬δ2

δ3 ¬δ3

δ4 ¬δ4

δ5 ¬δ5

δ6 ¬δ6

δ7 ¬δ7 δ8

δ9 ¬δ9

δ10 ¬δ10 δ11 ¬δ11

Nogoods:
I ¬δ1 ∨ ¬δ2

I ¬δ1 ∨ ¬δ6

I ¬δ1∨¬δ8∨¬δ9

I ¬δ1∨¬δ8∨¬δ11

Petr Vilím, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 10.3/32

Nogood recording�

δ1

δ2 ¬δ2

δ3 ¬δ3

δ4 ¬δ4

δ5 ¬δ5

δ6 ¬δ6

δ7 ¬δ7 δ8

δ9 ¬δ9

δ10 ¬δ10 δ11 ¬δ11

Nogoods:
I ¬δ1 ∨ ¬δ2

I ¬δ1 ∨ ¬δ6

I ¬δ1∨¬δ8∨¬δ9

I ¬δ1∨¬δ8∨¬δ11

Petr Vilím, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 10.4/32

Nogood recording�

δ1

δ2 ¬δ2

δ3 ¬δ3

δ4 ¬δ4

δ5 ¬δ5

δ6 ¬δ6

δ7 ¬δ7 δ8

δ9 ¬δ9

δ10 ¬δ10 δ11 ¬δ11

Nogoods:
I ¬δ1 ∨ ¬δ2

I ¬δ1 ∨ ¬δ6

I ¬δ1∨¬δ8∨¬δ9

I ¬δ1∨¬δ8∨¬δ11

Petr Vilím, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 10.5/32

Nogood propagation�

Nogoods are often long:

¬δ1 ∨ ¬δ2 ∨ ¬δ3 ∨ ¬δ4 ∨ ¬δ5 ∨ ¬δ6 ∨ ¬δ7 ∨ ¬δ8 ∨ ¬δ9

Filtering is done only if many δi are true:

δ1 ∧ δ2 ∧ · · · ∧ δ8 ⇒ ¬δ9

Constant re-evaluation of a nogood is

I costly
I expression is long
I there are many nogoods

I most of the time doesn’t propagate anything
I because too many δi are false or uknown.

Petr Vilím, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 11/32

Watched literals�

¬δ1 ∨ ¬δ2 ∨ ¬δ3 ∨ ¬δ4 ∨ ¬δ5 ∨ ¬δ6 ∨ ¬δ7 ∨ ¬δ8 ∨ ¬δ9

? ?

1?

?

1?

? ? ? ? ? ?

Key idea:

I As long as at least two δi are unknown, there’s nothing to do.
I Watch only those two and ignore the rest.

I Move the watch when δi becomes true.
I The watch can stay in place after backtrack

Petr Vilím, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 12.1/32

Watched literals�

¬δ1 ∨ ¬δ2 ∨ ¬δ3 ∨ ¬δ4 ∨ ¬δ5 ∨ ¬δ6 ∨ ¬δ7 ∨ ¬δ8 ∨ ¬δ9

? ?

1?

?

1?

? ? ? ? ? ?

Key idea:

I As long as at least two δi are unknown, there’s nothing to do.
I Watch only those two and ignore the rest.

I Move the watch when δi becomes true.
I The watch can stay in place after backtrack

Petr Vilím, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 12.2/32

Watched literals�

¬δ1 ∨ ¬δ2 ∨ ¬δ3 ∨ ¬δ4 ∨ ¬δ5 ∨ ¬δ6 ∨ ¬δ7 ∨ ¬δ8 ∨ ¬δ9

?

?

1

?

?

1?

? ? ? ? ? ?

Key idea:

I As long as at least two δi are unknown, there’s nothing to do.
I Watch only those two and ignore the rest.
I Move the watch when δi becomes true.

I The watch can stay in place after backtrack

Petr Vilím, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 12.3/32

Watched literals�

¬δ1 ∨ ¬δ2 ∨ ¬δ3 ∨ ¬δ4 ∨ ¬δ5 ∨ ¬δ6 ∨ ¬δ7 ∨ ¬δ8 ∨ ¬δ9

?

?

1

?

?

1?

? ? ? ? ? ?

Key idea:

I As long as at least two δi are unknown, there’s nothing to do.
I Watch only those two and ignore the rest.
I Move the watch when δi becomes true.

I The watch can stay in place after backtrack

Petr Vilím, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 12.4/32

Watched literals�

¬δ1 ∨ ¬δ2 ∨ ¬δ3 ∨ ¬δ4 ∨ ¬δ5 ∨ ¬δ6 ∨ ¬δ7 ∨ ¬δ8 ∨ ¬δ9

?

?

1

? ?

1

?

? ? ? ? ? ?

Key idea:

I As long as at least two δi are unknown, there’s nothing to do.
I Watch only those two and ignore the rest.
I Move the watch when δi becomes true.

I The watch can stay in place after backtrack

Petr Vilím, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 12.5/32

Watched literals�

¬δ1 ∨ ¬δ2 ∨ ¬δ3 ∨ ¬δ4 ∨ ¬δ5 ∨ ¬δ6 ∨ ¬δ7 ∨ ¬δ8 ∨ ¬δ9

?

?

1

? ?

1

?

? ? ? ? ? ?

Key idea:

I As long as at least two δi are unknown, there’s nothing to do.
I Watch only those two and ignore the rest.
I Move the watch when δi becomes true.

I The watch can stay in place after backtrack

Petr Vilím, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 12.6/32

Watched literals�

¬δ1 ∨ ¬δ2 ∨ ¬δ3 ∨ ¬δ4 ∨ ¬δ5 ∨ ¬δ6 ∨ ¬δ7 ∨ ¬δ8 ∨ ¬δ9

?

?

1

? ?1

? ? ? ? ? ? ?

Key idea:

I As long as at least two δi are unknown, there’s nothing to do.
I Watch only those two and ignore the rest.
I Move the watch when δi becomes true.
I The watch can stay in place after backtrack

Petr Vilím, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 12.7/32

Watched literals�

¬δ1 ∨ ¬δ2 ∨ ¬δ3 ∨ ¬δ4 ∨ ¬δ5 ∨ ¬δ6 ∨ ¬δ7 ∨ ¬δ8 ∨ ¬δ9

?

?1

?

?1

? ? ? ? ? ? ?

Key idea:

I As long as at least two δi are unknown, there’s nothing to do.
I Watch only those two and ignore the rest.
I Move the watch when δi becomes true.
I The watch can stay in place after backtrack

Petr Vilím, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 12.8/32

How it works

Branching on time, choices�

Branch on ranges instead:

presenceOf(x) !presenceOf(x) startOf(x) ≤ 10 startOf(x) > 10

endOf(x) ≤ 20 endOf(x) > 20 v ≤ 15 v > 15

Choice:
I An abstraction of any kind of binary decision.

I The decision doesn’t have to fix variable value.
I Multiple decisions on the same variable may be needed.

I The search doesn’t know what the choice is doing.
I Choices are generated when the search starts.

Petr Vilím, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 14.1/32

Branching on time, choices�

Branch on ranges instead:

presenceOf(x) !presenceOf(x) startOf(x) ≤ 10 startOf(x) > 10

endOf(x) ≤ 20 endOf(x) > 20 v ≤ 15 v > 15

Choice:
I An abstraction of any kind of binary decision.

I The decision doesn’t have to fix variable value.
I Multiple decisions on the same variable may be needed.

I The search doesn’t know what the choice is doing.
I Choices are generated when the search starts.

Petr Vilím, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 14.2/32

Stopping on mandatory parts�

estv + pv

lctv − pv

estv lctvmandatory part

pv

pv

When all choices are fixed then there must be mandatory part:

Additional choices are generated when necessary.

Petr Vilím, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 15.1/32

Stopping on mandatory parts�

estv + pv

lctv − pv

estv lctvmandatory part

pv

pv

When all choices are fixed then there must be mandatory part:

Additional choices are generated when necessary.

Petr Vilím, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 15.2/32

Rating the choices�

For each choice c we maintain:

I Rating of positive branch: rating+[c]
I Rating of negative branch: rating−[c]
I Rating of the choice: rating[c] := rating+[c] + rating−[c]

Design of the ratings

I Lower number means better rating.
I Ratings prefer choices that fails often or propagate a lot.

Petr Vilím, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 16/32

Computation of ratings�

When a branch of a choice is taken:

localRating :=

0 if the branch fails immediately
1 + R otherwise

Where R ∈ (0, 1] is a measure of reduction done by propagation.

Update rating of choice branch:

rating+/−[c] := α · rating+/−[c] + (1 − α) ·
localRating

avgRating[d]
Where:
I α ∈ [0.9, 0.99] is a constant controlling the speed of decay.
I avgRating[d] is average rating on current depth d.

Update rating of the choice:
rating[c] := rating+[c] + rating−[c]

Petr Vilím, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 17.1/32

Computation of ratings�

When a branch of a choice is taken:

localRating :=

0 if the branch fails immediately
1 + R otherwise

Where R ∈ (0, 1] is a measure of reduction done by propagation.

Update rating of choice branch:

rating+/−[c] := α · rating+/−[c] + (1 − α) ·
localRating

avgRating[d]
Where:
I α ∈ [0.9, 0.99] is a constant controlling the speed of decay.
I avgRating[d] is average rating on current depth d.

Update rating of the choice:
rating[c] := rating+[c] + rating−[c]

Petr Vilím, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 17.2/32

Computation of ratings�

When a branch of a choice is taken:

localRating :=

0 if the branch fails immediately
1 + R otherwise

Where R ∈ (0, 1] is a measure of reduction done by propagation.

Update rating of choice branch:

rating+/−[c] := α · rating+/−[c] + (1 − α) ·
localRating

avgRating[d]
Where:
I α ∈ [0.9, 0.99] is a constant controlling the speed of decay.
I avgRating[d] is average rating on current depth d.

Update rating of the choice:
rating[c] := rating+[c] + rating−[c]

Petr Vilím, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 17.3/32

Search algorithm�

DFS, Always decide the choice with the best rating.

Heap of
unchecked
choices

Check

Decide,
update rating

Choice Stack

Waiting
choices

best unchecked

resolved

waiting

applicable

decided

backtrack

negate the last
choice after backtrack

activation

Petr Vilím, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 18.1/32

Search algorithm�

DFS, Always decide the choice with the best rating.

Heap of
unchecked
choices

Check

Decide,
update rating

Choice Stack

Waiting
choices

best unchecked

resolved

waiting

applicable

decided

backtrack

negate the last
choice after backtrack

activation

Petr Vilím, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 18.2/32

Search algorithm�

DFS, Always decide the choice with the best rating.

Heap of
unchecked
choices

Check

Decide,
update rating

Choice Stack

Waiting
choices

best unchecked

resolved

waiting

applicable

decided

backtrack

negate the last
choice after backtrack

activation

Petr Vilím, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 18.3/32

Search algorithm�

DFS, Always decide the choice with the best rating.

Heap of
unchecked
choices

Check

Decide,
update rating

Choice Stack

Waiting
choices

best unchecked

resolved

waiting

applicable

decided

backtrack

negate the last
choice after backtrack

activation

Petr Vilím, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 18.4/32

Search algorithm�

DFS, Always decide the choice with the best rating.

Heap of
unchecked
choices

Check

Decide,
update rating

Choice Stack

Waiting
choices

best unchecked

resolved

waiting

applicable

decided

backtrack

negate the last
choice after backtrack

activation

Petr Vilím, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 18.5/32

Search algorithm�

DFS, Always decide the choice with the best rating.

Heap of
unchecked
choices

Check

Decide,
update rating

Choice Stack

Waiting
choices

best unchecked

resolved

waiting

applicable

decided

backtrack

negate the last
choice after backtrack

activation

Petr Vilím, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 18.6/32

Search algorithm�

DFS, Always decide the choice with the best rating.

Heap of
unchecked
choices

Check

Decide,
update rating

Choice Stack

Waiting
choices

best unchecked

resolved

waiting

applicable

decided

backtrack

negate the last
choice after backtrack

activation

Petr Vilím, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 18.7/32

Decide presence status first�

For optional interval variables, if we branch on time before
branching on presence status then part of the search tree may do
duplicate work:

startOf(x) ≥ 10

presenceOf(x) !presenceOf(x)

startOf(x) < 10

!presenceOf(x) presenceOf(x)

Duplicity

Petr Vilím, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 19/32

Search algorithm�

DFS, Always decide the choice with the best rating.

Heap of
unchecked
choices

Check

Decide,
update rating

Choice Stack

Waiting
choices

best unchecked

resolved

waiting

applicable

decided

backtrack

negate the last
choice after backtrack

activation

Petr Vilím, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 20.1/32

Search algorithm�

DFS, Always decide the choice with the best rating.

Heap of
unchecked
choices

Check

Decide,
update rating

Choice Stack

Waiting
choices

best unchecked

resolved

waiting

applicable

decided

backtrack

negate the last
choice after backtrack

activation

Petr Vilím, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 20.2/32

Which branch of the choice try first?�

The one with better rating

I It is more likely to fail then to other branch.
I It heads towards failures and not to a solution.

Why?

I It is faster (on infeasible models).

And why?

I See later.

Petr Vilím, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 21/32

More ingredients�

I Geometric restarts by 15% and nogoods.
I Initialize ratings by trying all choices in the root node.
I Strong branching and shaving.

I In root node, evaluate multiple choices before committing to
one.

I Exploit failures and same propagations in both branches.

I Couple FDS with LNS.
I Maximum propagation available in CP Optimizer.
I Randomization.

Petr Vilím, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 22/32

Experimental results

Experimental setup�

Our goal:

I Show that FDS is generic and works well as “plan B” LNS.
I Show that it is comparable with state of the art.
I ⇒ evaluate on open benchmark instances (more than 1500).

Attack upper bounds:

I Solve the problem using two threads: LNS + FDS.
I Time limit 10 minutes up to 8 hours 20 minutes.

Attack lower bounds:

I Use 1 thread running FDS only.
I Start with bestLB − 1 and continue up if infeasible.
I Time limit 5..10 minutes per step.

Petr Vilím, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 24.1/32

Experimental setup�

Our goal:

I Show that FDS is generic and works well as “plan B” LNS.
I Show that it is comparable with state of the art.
I ⇒ evaluate on open benchmark instances (more than 1500).

Attack upper bounds:

I Solve the problem using two threads: LNS + FDS.
I Time limit 10 minutes up to 8 hours 20 minutes.

Attack lower bounds:

I Use 1 thread running FDS only.
I Start with bestLB − 1 and continue up if infeasible.
I Time limit 5..10 minutes per step.

Petr Vilím, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 24.2/32

Experimental setup�

Our goal:

I Show that FDS is generic and works well as “plan B” LNS.
I Show that it is comparable with state of the art.
I ⇒ evaluate on open benchmark instances (more than 1500).

Attack upper bounds:

I Solve the problem using two threads: LNS + FDS.
I Time limit 10 minutes up to 8 hours 20 minutes.

Attack lower bounds:

I Use 1 thread running FDS only.
I Start with bestLB − 1 and continue up if infeasible.
I Time limit 5..10 minutes per step.

Petr Vilím, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 24.3/32

Experimental results�

Benchmark set
of

instances
Lower bound
improvements

Upper bound
improvements

Closed
instances

JobShop 48 40 3 15

JobShopOperators 222 107 215 208

FlexibleJobShop 107 67 39 74

RCPSP 472 52 1 0

RCPSPMax 58 51 23 1

MultiModeRCPSP (j30) 552 No reference 3 535

MultiModeRCPSPMax 85 84 77 85

Petr Vilím, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 25/32

Why it works well?
Analyzing behavior of the search.

Search tree�

S
am

e
ch

oi
ce

Same choice

Inner node
Fail

Petr Vilím, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 27.1/32

Search tree�

S
am

e
ch

oi
ce

Same choice

Inner node
Fail

Petr Vilím, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 27.2/32

Why it (probably) works�

0-fail1-fail
2-fails

(closing choice)

Closing choices:

I Mandatory to close a branch.
I Strongly preferred by rating system.
I Rating of a closing choice immediately improves.

I Likely to be drawn again

1-fail choices:

I Does not increase number of open branches.
I 2-fails choices recruit from 1-fail choices.
I Not a big harm to repeat it.

Petr Vilím, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 28/32

Search tree�

S
am

e
ch

oi
ce

Same choice

Inner node
Fail

Petr Vilím, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 29/32

Why less promising branch first?�

Assuming hard infeasible model:

I It is not likely that current restart finishes the proof.
I What remains after restart is a nogood constraint.
I Shorter nogoods are easier to apply.

I Especially if left branch in root node was fully explored.

I Hope for cumulative effect of many short nogoods.

Traditional versus range branching on variable x ∈ [0..1000]:

x = 10 x , 10 x ≤ 10 x ≥ 10

Petr Vilím, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 30/32

Case study�

jobshop tail50 makespan ≤ 1832

I Infeasible, proof takes 465s.

Inverse branch order:

I Proof takes 1023s.

Don’t prefer failures:

localRating :=

 0 if the branch fails immediately

R +1 otherwise

I No proof in 24 hours.

Parallelism (since version 12.6.2):

I 317s using 2 workers (32% faster).

Petr Vilím, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 31.1/32

Case study�

jobshop tail50 makespan ≤ 1832

I Infeasible, proof takes 465s.

Inverse branch order:

I Proof takes 1023s.

Don’t prefer failures:

localRating :=

 0 if the branch fails immediately

R +1 otherwise

I No proof in 24 hours.

Parallelism (since version 12.6.2):

I 317s using 2 workers (32% faster).

Petr Vilím, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 31.2/32

Case study�

jobshop tail50 makespan ≤ 1832

I Infeasible, proof takes 465s.

Inverse branch order:

I Proof takes 1023s.

Don’t prefer failures:

localRating :=

 0 if the branch fails immediately

R +1 otherwise

I No proof in 24 hours.

Parallelism (since version 12.6.2):

I 317s using 2 workers (32% faster).

Petr Vilím, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 31.3/32

Case study�

jobshop tail50 makespan ≤ 1832

I Infeasible, proof takes 465s.

Inverse branch order:

I Proof takes 1023s.

Don’t prefer failures:

localRating :=

 0 if the branch fails immediately

R +1 otherwise

I No proof in 24 hours.

Parallelism (since version 12.6.2):

I 317s using 2 workers (32% faster).
Petr Vilím, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 31.4/32

Questions?

	Why we developed it
	Inspiration
	How it works
	Experimental results
	Why it works well?

