
© 2015 IBM Corporation

Scheduling Constraints,
Propagation

CP Optimizer Development Team

Petr Vilím

© 2015 IBM Corporation2

Lazy clause generation and CP-based scheduling

● Lazy Clause Generation:
– Analyze failures
– Dynamically (lazily) add constraints (clauses) to avoid failing again for the same reason
– Filtering algorithms not that important

[1] Schutt, Feydy, Stuckey, Wallace: Solving RCPSP/max by lazy clause generation
 Journal of Scheduling 2012

© 2015 IBM Corporation3

noOverlap Constraint
(unary/disjunctive resource)

[1] Vilím: Global Constraints in Scheduling, PhD thesis, 2007

© 2015 IBM Corporation4

Propagation algorithms

 Overload Checking (fail detection)
– O(n): [Fahimi, Quimper]

 Edge-Finding
– O(n log n): [Carlier & Pinson 1994], [Vilím]
– O(n2): [Martin & Shmoys 96], [Wolf 2003], [Nuijten].

 Not-Fist/Not-Last
– O(n2): [Baptiste & Le Pape 1996], [Torres & Lopez 1999], [Wolf 2003]
– O(n log n): [Vilím]

 Detectable Precedences
– O(n log n): [Vilím]
– O(n): [Fahimi, Quimper]

 …

Each algorithm removes different type of inconsistent values, therefore they

can be used together to achieve better pruning.

© 2015 IBM Corporation5

Fixpoint

© 2015 IBM Corporation6

Example: no solution (overload)

Traditional explanation:

 Union of time windows of {B, C, D} is [25, 43], its length is 18.

 Total duration of {B, C, D} is 6 + 4 + 10 = 20.

 18 < 20 → no solution.

Leads to O(n2) algorithm.

© 2015 IBM Corporation7

Example: no solution (overload)

Alternative explanation (leads to O(n log n) algorithm):

 Lets relax the problem by ignoring deadlines (all lcti = ∞).

© 2015 IBM Corporation8

Example: no solution (overload)

Alternative explanation (leads to O(n log n) algorithm):

 Lets relax the problem by ignoring deadlines (all lcti = ∞).

 With this relaxation, what is earliest completion time of set {A, B, C, D}?

© 2015 IBM Corporation9

Example: no solution (overload)

Alternative explanation (leads to O(n log n) algorithm):

 Lets relax the problem by ignoring all deadlines (assuming all lcti = ∞).

 With this relaxation, what is earliest completion time of set {A, B, C, D}?
– estB + pB + pC + pD = 25 + 6 + 4 + 10 = 45

© 2015 IBM Corporation10

Example: no solution (overload)

Alternative explanation (leads to O(n log n) algorithm):

 Lets relax the problem by ignoring deadlines (all lcti = ∞).

 With this relaxation, what is earliest completion time of set {A, B, C, D}?
– estB + pB + pC + pD = 25 + 6 + 4 + 10 = 45

 But what is the deadline for {A, B, C, D}?
– lct{A,B,C,D} = max{lctA, lctB, lctC, lctD} = max{28, 36, 42, 43} = 43

 43 > 45 → no solution.

© 2015 IBM Corporation11

What is the difference?

 Classical explanation does not detect a problem for set {A, B, C, D}.
– It have to check also subset {B, C, D} to recognize infeasibility.
– There is O(n2) sets to check this way

• One set for every combination of estX and lctY.

 Alternative explanation correctly recognize problem for {A, B, C, D}.
– There is O(n) sets to check this way

• One for every lctY.

However, how to compute earliest completion times effectively?

© 2015 IBM Corporation12

Lets get more formal

 Let Ω is a set of activities.
– Earliest start time of Ω is estΩ = min{esti, i Ω}∊
– Latest completion time of Ω is lctΩ = max{lcti, i Ω}∊
– Total duration of Ω is pΩ = sum{pi, i Ω}∊

 For Ω = {B, C, D}:
– estΩ = 25
– lctΩ = 43
– pΩ = 20

© 2015 IBM Corporation13

Lets get more formal

 Let Ω is a set of activities.
– Earliest start time of Ω is estΩ = min{esti, i Ω}∊
– Latest completion time of Ω is lctΩ = max{lcti, i Ω}∊
– Total duration of Ω is pΩ = max{lcti, i Ω}∊

 Earliest completion time of (another set of activities) Θ is:

 For Θ = {A, B, C, D} the best Ω is {B, C, D} and ECTΘ = 25 + 20 = 45.

© 2015 IBM Corporation14

Overload rule

45 43

© 2015 IBM Corporation15

Computation of earliest completion time

 The goal is to quickly recompute ECTΘ
after a change of Θ such as:

– addition of an activity into Θ
– removal of an activity from Θ

 The idea: represent Θ by a binary tree.

© 2015 IBM Corporation16

Θ-Tree

 Activities are represented by
leaves

– sorted by esti

 Each node holds:
– ∑P: total duration of

activities in the subtree
– ECT: earliest completion

time of the subtree

 ECT of Θ is in the root node.

Activities
sorted by esti

© 2015 IBM Corporation17

Θ-Tree: recursive computation

© 2015 IBM Corporation18

Θ-Tree: recursive computation

© 2015 IBM Corporation19

Θ-Tree: time complexities

© 2015 IBM Corporation20

Overload checking algorithm

Time complexity is O(n log n).

© 2015 IBM Corporation21

Example of implementation of Θ-Tree

 Tree is stored in an array (similar to array representation of a heap).

 Tree doesn't change its shape. Instead of node addition/removal nodes are turned on/off.

 Node turned off:
– ∑P = 0
– ECT = -∞

x x x x

All activities
sorted by esti

Unused

Activity is not in Θ

All activities
sorted by esti

Internal
nodes

Root
node

© 2015 IBM Corporation22

Edge Finding

 Edge finding improve bounds by removing values that would lead to overflow.

 Scheduling activity C before 18 would lead to overflow.
– estC := 18

© 2015 IBM Corporation23

Edge Finding

 Remember the overflow rule:

 Edge finding rule is:

 Setting lctΘ as deadline for activity i would cause overflow.
– Therefore i can start only after all activities from Θ finish.

© 2015 IBM Corporation24

Edge Finding: idea of the algorithm

 Consider some deadline t.

 Θ = all activities that must finish before t.

 Λ = all activities that can start before t but can
finish after t.

 If we can add one activity from Λ into Θ, how
big earliest completion time we can make?

 Is it bigger than t?

 If yes, activity we used from Λ can be updated
and removed from Λ.

 for example t = lctD = 18

 Θ = {D, E, F}

 Λ = {C}

 ECT{C,D,E,F} = 19

 Yes: 19 > 18

 estC := 18

© 2015 IBM Corporation25

Θ-Λ-Tree
The concept of Θ-tree is extended to compute:

© 2015 IBM Corporation26

Θ-Λ-Tree: time complexities

© 2015 IBM Corporation27

Edge Finding algorithm

Time complexity is O(n log n).

© 2015 IBM Corporation28

Symmetry

 Just presented algorithm updates only esti, not lcti.

 Algorithm to update lcti is symmetrical.

 There are two ways to implement it:
– Write the algorithm twice (“forward” and “backward” versions).
– Write the algorithm only once but feed it with symmetrical data.

Decision variables

Symmetry interface (switch)

Edge Finding algorithm

© 2015 IBM Corporation29

Not-First / Not-Last

 Let Θ = {A, B}.

 ECTΘ = ectA + pA + pB = 0 + 11 + 10 = 21

 If Θ is scheduled before C then Θ would have to end before lctC – pC = 20 – 2 = 18
– This is not possible because 21 > 18

 At least one activity from Θ must be after C.

 lctC ≤ max(lctA – pA, lctB – pB) = 17

Propagation rule:

© 2015 IBM Corporation30

Not-Last algorithm

Time complexity is O(n log n).

© 2015 IBM Corporation31

Detectable precedences

 C doesn't fit before B. Therefore B is before C: B«C

 Similarly, C doesn't fit before A. Therefore A is before C: A«C

 {A, B}«C therefore C cannot start before ECT{A,B} = 10.

© 2015 IBM Corporation32

Detectable precedences

 Detectable precedence:

The algorithm:

 Take an activity i

 Let Θ are detectable predecessors of i: Θ = {j, j«i}.

 Then i cannot start before ECTΘ.

© 2015 IBM Corporation33

Detectable Precedences algorithm

Time complexity is O(n log n).

© 2015 IBM Corporation34

Cumulative Resources
Timetable Edge Finding

[1] Vilím: Timetable Edge Finding Filtering Algorithm for Discrete Cumulative Resources, CPAIOR 2011

© 2015 IBM Corporation35

Cumulative Resource

© 2015 IBM Corporation36

Filtering Algorithms for Cumulative Resource

Classical Filtering Algorithms:

 Timetable propagation

 Edge Finding:

– O(kn2)

– O(kn log n)

 Extended Edge Finding
– O(kn2)

 Not-First / Not-Last
– O(n2 log n), lazy

 Energetic Reasoning
– O(n3)

These algorithms are independent and
could/should be used together.

Timetable Edge Finding:

 Inspired by all the algorithms on the left.

 Meant to be used together with timetable
propagation.

 Reuses/shares data structure with
timetable propagation.

 Stronger propagation than both Edge
Finding and Extended Edge Finding.

 Limited Not-First / Not-Last and Energetic
Reasoning.

 O(n2)

 Lazy propagation: may need more
iterations to reach fixpoint.

© 2015 IBM Corporation37

Timetable Propagation
 If for activity i holds lcti – pi < esti + pi then the activity necessarily use the

resource during interval [lcti – pi , esti + pi].

 In this case we split the interval into fixed and free parts:

 Fixed parts are aggregated into timetable (graph of minimum resource usage):

 The timetable is used to improve bounds of activities.

© 2015 IBM Corporation38

Overload Checking

 Similar to disjunctive case. O(n2) and O(n log n) versions.

 It is the cornerstone of all Edge Finding algorithms.

 The idea is to chose an interval [X, Y] and compare:

Available energy (area) in interval [X, Y]: Total energy of activities which must
be completely inside [X, Y]:

© 2015 IBM Corporation39

Standard and Extended Edge Finding Algorithms

 In this example, estD can be updated from 0 to 4.

 Otherwise, either interval [0, 5] or [2, 5] would be overloaded.

Informally speaking, these algorithms update time windows in such a way that scheduling
any activity i on its earliest starting time esti does not lead to immediate overload.

© 2015 IBM Corporation40

Energetic Reasoning Algorithm

 Energy computation in Edge Finding takes into account only activities which are completely
inside the interval [X,Y].

 Therefore it misses cases when only a part of the activity must be executed inside [X, Y]. For
example, activity i in the following picture consumes at least 3 energy units during [1, 5]:

 There is Energetic Reasoning algorithm, which takes this energy into account, but it is O(n3).

 However there are some simple cases where we can improve energy computation without
increasing time complexity.

 In particular, the idea is to take into account timetable.

© 2015 IBM Corporation41

Timetable Edge Finding

The idea is to split energy computation during [X, Y] into two parts:

energy from fixed parts

This energy can be easily computed from
timetable:

energy from from free parts

Computed by standard Edge Finding way,
but only from free parts:

© 2015 IBM Corporation42

Example of energy computation

What is the minimal energy contribution of activity i to interval [1, 5]?

 Energetic reasoning: 3
– Exact computation, but slow.

 Edge Finding: 0
– Activity i is not completely inside [1, 5] therefore it is ignored.

 Timetable Edge Finding: 2 (from fixed part)
– Fast, but not exact.

© 2015 IBM Corporation43

Example of energy computation

Timetable Edge Finding splits activity i into two fixed part (duration 2) and free part
(also duration 2):

For interval [1,5], TTEF takes fixed part into account, but ignores free part (because it
is not completely inside [1,5]). Total contribution counted is 2 energy units.

Note that for fixed activities, TTEF computes the same value as Energetic Reasoning.

© 2015 IBM Corporation44

Timetable Edge Finding algorithm

Time complexity is O(n2).

© 2015 IBM Corporation45

Propagation with optional interval variables

[1] Laborie, Rogerie: Reasoning with Conditional Time-intervals. FLAIRS-08.
[2] Laborie, Rogerie: Reasoning with Conditional Time-intervals,
 Part II: an Algebraical Model for Resources. FLAIRS-09.

© 2015 IBM Corporation46

Alternatives

Let activity C represents my travel to visit a customer. I can travel by:

 train

 plane

 or car.

This decision affects:

 duration

 departure time

 cost

 resource usage

Traditionally/historical way is to use meta-constraints to describe the problem:

 Either (train) duration = 8h and departure in {9:00, 13:40, .. } and cost = 170€

 Or (plane) duration = 3h and departure in { 9:20, 12:30, .. } and cost = 250€

 Or (car) duration = 11h and cost = 200€

 C

Alternative

C: Train

C: Plane

C: Car

© 2015 IBM Corporation47

Alternatives: new approach

The idea is to represent not only C as activity, but also its alternatives (modes).

 C

Alternative

C: Train

C: Plane

C: Car

 C is present activity.

 Its alternatives are optional
activities.

 Optional activities doesn't have
to appear in the schedule.

 If they don't appear then their
start is undefined.

The solver must make a decision which one of the activities C:Train, C:Plane and C:Car will be
present in the solution. The remaining two activities will be absent.

© 2015 IBM Corporation48

Optional Interval Variable

Optional Interval Variable a:

 Domain(a)  {}  { [s,e) | s,e, s≤e }

In the model declaration, each interval variable must be either:
– present (mandatory, is not in the domain)
– absent (domain is {
– optional otherwise

In a solution, each interval variable must be either:
– present, then it starts at time s and ends at time e,
– or absent (), and then it doesn't have any start or end.

Notations: Let a be a fixed interval variable:
– If a={[s,e)} (a is present) then we denote:

• x(a)=1 : presence status
• s(a)=s : start of a
• e(a)=e : end of a

– If a={} (a is absent), we denote:
• x(a)=0 (in this case, s(a) and e(a) are meaningless)

Absent interval Interval of integers

© 2015 IBM Corporation49

Semantics of the alternative constraint
alternative(C, {C:Train, C:Plane, C:Car})

 If C is present then:
– Exactly one of C:Train, C:Plane, C:Car is

present.
– C and the chosen alternative start together

and end together.

 If C is absent then C:Train, C:Plane and C:Car
are also absent.

 C

C: Train

C: Plane

C: Car

Alternative

© 2015 IBM Corporation50

Semantics of alternative constraint
alternative(C, {C:Train, C:Plane, C:Car})

 If C is present then:
– Exactly one of C:Train, C:Plane, C:Car is

present.
– C and the chosen alternative starts together

and end together.

 If C is absent then C:Train, C:Plane and C:Car
are also absent.

This allows to easily constraints both on master interval C and its modes like C:Car.

After arrival, I'll check in to the hotel:
– endBeforeStart(C, HotelCheckin)

I have to be there by 14 o'clock:
– endOf(C) ≤ 14

If I use plane then I have to buy tickets at least 10 days ahead:
– presenceOf(BuyPlaneTickets) = presenceOf(C:Plane)
– endsBeforeStart(BuyPlaneTickets, C, 10)

Car is a disjunctive resource that cannot be used by more than one driver at a time:
– noOverlap([C:Car, TravelOfMyWife1, TravelOfMyWife2, TravelOfMyWife3]);



 C

C: Train

C: Plane

C: Car

Alternative

© 2015 IBM Corporation51

Propagation of alternative constraint
alternative(C, {C:Train, C:Plane, C:Car})

 For optional activities, we maintain their time
window [esti, lcti] for the case they will become
present.

 For example:
– estC:Train = 9:00 (first train)
– estC:Plane = 9:20 (first plane)
– estC:Car = 8:00 (I refuse to get up early)

 Earliest starting time of master activity C is the minimum of available alternatives:
– estC = 8:00

 C

C: Train

C: Plane

C: Car

Alternative

© 2015 IBM Corporation52

Propagation of alternative constraint

 Earliest starting time of master activity C is the minimum of available alternatives:
– estC = 8:00

 My wife occupies the the car until 15:00 (present interval variable).
– noOverlap constraint propagates: estC:Car = 15.

 But that's too late (I have to be there by 14:00): lctC:Car ≤ lctC = 14.
– Therefore C:Car becomes absent.
– If C:Car wouldn't be optional then it would mean a fail.

 As a result, alternative constraint propagates estC = 9:00.

 C

C: Train

C: Plane

C: Car

Alternative

alternative(C, {C:Train, C:Plane, C:Car})

 For optional activities, we maintain their time
window [esti, lcti] for the case they will become
present.

 For example:
– estC:Train = 9:00 (first train)
– estC:Plane = 9:20 (first plane)
– estC:Car = 8:00 (I refuse to get up early)

© 2015 IBM Corporation53

How to handle optional activities in resource constraints?

The general rules are:

 Present activities influence all other activities on the resource including optional ones.
– My wife blocked the car, C:Car was updated.

 Absent activities are ignored.
– Once I decided not to use the car, car is not affected by my travel at all.

 Optional activities does not affect any other activity on the resource.
– While I was only speculating about using the car, I couldn't postpone ride of my wife.

© 2015 IBM Corporation54

Disjunctive Edge Finding with optional activities

 Remember Edge Finding propagation rule:

 Set Θ cannot contain any optional (or absent) interval.
– Otherwise optional activity would affect activity i on the resource.

→ Never add optional activity into Θ.

 Note that i could be optional activity.

© 2015 IBM Corporation55

Disjunctive Edge Finding with optional activities

 Remember Edge Finding propagation rule:

Another approach:

Use classical EF algorithm (unaware of optional activities) but pretend (just for the algorithm)
that all optional activities have lcti = ∞.

– If optional activity I is in Θ then lctΘ = ∞ and therefore the inequality doesn't hold.

→ It is not necessary to write new version of EF algorithm.

 It works for cumulative Edge Finding too.

© 2015 IBM Corporation56

Implementation of EF with optional activities

Optional decision variables

Interface for symmetry and optionality

Edge Finding algorithm

It works for Edge Finding, but not for (for example) Not-First / Not-Last.

© 2015 IBM Corporation57

Logical Network

[1] Laborie, Rogerie: Reasoning with Conditional Time-intervals. FLAIRS-08.
[2] Laborie, Rogerie: Reasoning with Conditional Time-intervals,
 Part II: an Algebraical Model for Resources. FLAIRS-09.

© 2015 IBM Corporation58

Logical constraints

Presence constraint presenceOf(a) means that a is present: x(a)=1

The constraint presenceOf(a) could be used in composed constraints
(meta-constraints). For example:

– Same status: presenceOf(a)presenceOf(b)
– Incompatibility: presenceOf(a) != presenceOf(b)
– Implication: presenceOf(a) ≤ presenceOf(b)
– At least 2 present: presenceOf(a) + presenceOf(b) + presenceOf(c) ≥ 2

© 2015 IBM Corporation59

Constraint Propagation: Logical network

A Logical network is in charge of handling a set of binary logical constraints
that can be inferred from the model:

Those binary logical constraints are identified during presolve. For example:
– presenceOf(a)  presenceOf(b)
– alternative(a, [b1,…,bn]) implies presenceOf(bi)  presenceOf(a)

The binary logical constraints are translated as implications:
[¬] presenceOf(a)  [¬] presenceOf(b)

Logical network allows:
– detecting infeasibilities
– detecting new implications between intervals
– fixing presence status of intervals
– querying in O(1) whether presenceOf(a)presenceOf(b) for any (a,b)
– triggering events when the relation between two intervals changes

© 2015 IBM Corporation60

Constraint Propagation: Logical network

 Logical network = Implication graph (as in 2-SAT)
– Nodes are literals representing the presence value of an

interval or its negation (i.e. 2 nodes per interval variable).
– Arcs are implications

 Literals with equivalent status are merged

 Fixed literals are removed from the graph

 The logical network maintains the transitive closure of
implication relation between literals

© 2015 IBM Corporation61

Temporal Net

[1] Laborie, Rogerie: Reasoning with Conditional Time-intervals. FLAIRS-08.
[2] Laborie, Rogerie: Reasoning with Conditional Time-intervals,
 Part II: an Algebraical Model for Resources. FLAIRS-09.

© 2015 IBM Corporation62

Precedence constraints

 Simple Precedence Constraints ti+z≤tj reified by presence statuses

 Example: endBeforeStart(a,b,z) means

x(a) x(b)  e(a) + z ≤ s(b)

 Complete set of precedence constraints:

startBeforeStart, startBeforeEnd

endBeforeStart, endBeforeEnd

startAtStart, startAtEnd

endAtStart, endAtEnd

 Presolve recognizes other ways to model precedences, for example:
endOf(a) <= startOf(b)

© 2015 IBM Corporation63

Constraint Propagation: Temporal network

 Precedence constraints are aggregated in Temporal network

 Conditional reasoning. Suppose that a and b are optional.

 Propagation on the conditional bounds of a (would a be present) can assume that b will
be present too, thus:

 emax(a)  min(emax(a), smax(b))

 Bounds are propagated even on interval variables with still undecided presence status.

a b

endBeforeStart(a,b): From Logical network

presenceOf(a)presenceOf(b)

© 2015 IBM Corporation64

Constraint Propagation: Temporal network

 The temporal network is a directed graph where:
– nodes are interval end points (start or end)
– arcs are precedence constraints (with min delay)

 Let u and v be two interval end points and i(u),i(v) respectively denote
the intervals of u and v

 An arc (u,v,duv) is said:

– active on v iff it can propagate on v, that is
presenceOf(i(v))presenceOf(i(u))

– Active on u iff it can propagate on u, that is
presenceOf(i(u))presenceOf(i(v))

u v



duv

u v



duv

© 2015 IBM Corporation65

Constraint Propagation: Temporal network

 At root node, an adapted Bellman-Ford algorithm is run:
– Uses “active on source/target status” to propagate on interval conditional

bounds
– Detects positive cycles between nodes with equivalent presence status

 Then, incremental propagation of each arc uses classical bound-
consistency

 The temporal network also computes the connected and strongly
connected components (useful for the search)

u v


duv

w

dvwdwu




duv+dvw+dwu>0  !presenceOf(i(u))

© 2015 IBM Corporation66

Constraint Propagation: Simple example

 Inspired from [Barták&Čepek 2007]

CollectMaterial (1)

GetTube

SawTube (30)

ClearTube (20)

BuyTube (40)

ALT

WeldTube (15)

AssemblePiston (5)

ShipPiston (0)

SawRod (10)

ClearRod (2)

WeldRod (15)

CollectKit (1)

AssembleKit (5)

Deadline=70

MakeTube

© 2015 IBM Corporation67

Constraint Propagation: Simple example

 Inspired from [Barták&Čepek 2007]

CollectMaterial (1)

GetTube

SawTube (30)

ClearTube (20)

BuyTube (40)

ALT

WeldTube (15)

AssemblePiston (5)

ShipPiston (0)

SawRod (10)

ClearRod (2)

WeldRod (15)

CollectKit (1)

AssembleKit (5)

Deadline=70

MakeTube

	Workshop IBM ILOG CPLEX CP Optimizer CP Optimizer Development Team Sept. 27-29, 2011
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Model: Logical constraints
	Constraint Propagation: Logical network
	Slide 60
	Slide 61
	Model: Precedence constraints
	Constraint Propagation: Temporal network
	Slide 64
	Slide 65
	Constraint Propagation: Simple example
	Slide 67

