Failure-directed Search for Constraint-based
Scheduling

Petr Vilim, Philippe Laborie, Paul Shaw

IBM

July 12, 2015

Petr Vilim, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015

1/32

'ﬂ Outline

Why we developed it

Inspiration

How it works

Experimental results

Why it works well?

Petr Vilim, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 2/32

@ Why we developed failure-directed search

Automatic search in CP Optimizer for scheduling used to be:

» Portfolio based.

» Initial solution(s): portfolio of SetTimes searches.
» Optimization: Large Neighbourhood Search (LNS).
» Proof of optimality: almost nothing.

The problem:

» We were satisfied with performance of the LNS.

» But for small and medium sized problems, we needed
something in the portfolio to finish the search by a proof of
optimality.

» We needed a generic plan B when LNS is stuck.

Petr Vilim, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015

3/32

' Plan B approach

Start plan B one when LNS is not improving the solution any more
Assumptions:

» There probably isn’'t any (better) solution.

» If there is one, it is very hard to find.

» It is necessary to explore the whole search space.

Consequences:

» Failure-directed search was tuned on infeasible problems.
» We gave up on leading the search towards a solution.
» If a solution is found, it is by an accident.

» The search can perform badly when the gap is still big.
Petr Vilim, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling

July 12, 2015 4/32

Inspiration from CP
(and SAT)

W State-of-the-art generic search in CP

||IIH
Q-

» Impact-based search
» Weighted-degree heuristics
» Activity-based search

The main idea:

» Choose the most interesting variable
» Assign the most promising value to it

Other ingredients:

» Periodic restarts (geometric, luby, ...)
» Nogood learning (from restarts)

Petr Vilim, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling

/\

x=10

x# 10

July 12, 2015

6/32

W Impact-based search

Search space estimation:

B 0 if infeasible
IDx1| XX |Dxn|

otherwise
Impact of an assignment:

Ixi=a)=1-

P after

bigger is better
before
Average impact of an assignment:

- 1
I(x;=a) = ﬁ Zlk(x =a)

Impact of a variable:

)=, (1~1(x=a)

aeD;

Petr Vilim, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling

July 12, 2015 7/32

W Impact-based search

Choose variable

» with the maximum impact (depends on current domain)
» to treat hard-to-assign variables first.
Choose value

» with the smallest impact

» to maximize chances of extending current partial assignment
to a solution.

Petr Vilim, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 8/32

& Restarts

AAAA

» Restarting allows to reconsider decisions made at the top of
the search tree.

» Without nogood recording, the search may duplicate some
work.

Petr Vilim, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12,2015 9/32

a Nogood recording

Petr Vilim, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12,2015 10.1/32

a Nogood recording

Nogoods:
> =01V =)

Petr Vilim, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12,2015 10.2/32

a Nogood recording

Nogoods:
> =01 V oo
» =0 V =6

Petr Vilim, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12,2015 10.3/32

a Nogood recording

Nogoods:
> =01 V =,
» =81 V =6
» =01V —dg V g

Petr Vilim, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12,2015 10.4/32

a Nogood recording

Nogoods:
> =01 V =,
» =81 V =6
» =01V —dg V g
» =81 Vi3V iy

Petr Vilim, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12,2015 10.5/32

a Nogood propagation

Nogoods are often long:
=81 V =83 V =83 V =84 V =85 V =66 V =67 V =88 V =g
Filtering is done only if many ¢; are true:
01N A+~ ANdg = —dg

Constant re-evaluation of a nogood is

» costly

» expression is long
» there are many nogoods

» most of the time doesn’t propagate anything
» because too many §; are false or uknown.

Petr Vilim, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12,2015 11/32

W Watched literals

? ? ? ? ? ? ? ? ?
=01 V =0 V =03 V =04 V =05 V =0g V 07 V —dg V —dg

Key idea:

» As long as at least two ¢; are unknown, there’s nothing to do.
» Watch only those two and ignore the rest.

Petr Vilim, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12,2015 12.1/32

W Watched literals

? ? ? ? ? ? ? ? ?
=01 V =0 V =03 V =04 V =05 V =0g V 07 V —dg V —dg

[T

Key idea:

» As long as at least two ¢; are unknown, there’s nothing to do.
» Watch only those two and ignore the rest.

Petr Vilim, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12,2015 12.2/32

W Watched literals

? 1 ? ? ? ? ? ? ?
=01 V =0 V =03 V =04 V =05 V =0g V 07 V —dg V —dg

[T

Key idea:

» As long as at least two ¢; are unknown, there’s nothing to do.
» Watch only those two and ignore the rest.
» Move the watch when 6; becomes true.

Petr Vilim, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12,2015 12.3/32

W Watched literals

? 1 ? ? ? ? ? ? ?
=01 V =0 V =03 V =04 V =05 V =0g V 07 V —dg V —dg

I [

Key idea:

» As long as at least two ¢; are unknown, there’s nothing to do.
» Watch only those two and ignore the rest.
» Move the watch when 6; becomes true.

Petr Vilim, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12,2015 12.4/32

W Watched literals

? 1 1 ? ? ? ? ? ?
=01 V =0 V =03 V =04 V =05 V =0g V 07 V —dg V —dg

I [

Key idea:

» As long as at least two ¢; are unknown, there’s nothing to do.
» Watch only those two and ignore the rest.
» Move the watch when 6; becomes true.

Petr Vilim, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12,2015 12.5/32

W Watched literals

? 1 1 ? ? ? ? ? ?
=01 V =0 V =03 V =04 V =05 V =0g V 07 V —dg V —dg

I I

Key idea:

» As long as at least two ¢; are unknown, there’s nothing to do.
» Watch only those two and ignore the rest.
» Move the watch when 6; becomes true.

Petr Vilim, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12,2015 12.6/32

W Watched literals

?

1 ? ? ?

? ? ? ?
=01 V =0 V =03 V =04 V =05 V =0g V 07 V —dg V —dg

I

Key idea:

» As long as at least two ¢; are unknown, there’s nothing to do.
» Watch only those two and ignore the rest.

» Move the watch when 6; becomes true.

» The watch can stay in place after backtrack

Petr Vilim, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling

July 12,2015 12.7/32

W Watched literals

?

? ? ? ?

? ? ? ?
=01 V =0 V =03 V =04 V =05 V =0g V 07 V —dg V —dg

I

Key idea:

» As long as at least two ¢; are unknown, there’s nothing to do.
» Watch only those two and ignore the rest.

» Move the watch when 6; becomes true.

» The watch can stay in place after backtrack

Petr Vilim, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling

July 12,2015 12.8/32

How it works

@ Branching on time, choices

Branch on ranges instead:

N N

presence0f(x) ! presence0f(x) startOf(x) < 10 startOf(x) > 10

N N

end0f(x) < 20 end0f(x) > 20 v<15 v>15

Petr Vilim, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12,2015 14.1/32

@ Branching on time, choices

Branch on ranges instead:

N N

presence0f(x) ! presence0f(x) startOf(x) < 10 startOf(x) > 10

endOf(x) <20

end0f(x) > 20 v <15 v>15

Choice:

» An abstraction of any kind of binary decision.
» The decision doesn’t have to fix variable value.
> Multiple decisions on the same variable may be needed.

» The search doesn’t know what the choice is doing.
» Choices are generated when the search starts.

Petr Vilim, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015

14.2/32

' Stopping on mandatory parts

Py .

mandatory part

est, Ict,

Iet, —p,

< >

p, -

Petr Vilim, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12,2015 15.1/32

' Stopping on mandatory parts

p\/ —

»-

mandatory part

est, Ict,

Iet, —p,

< >

L D, o

When all choices are fixed then there must be mandatory part:
= e | | | | | | |

Additional choices are generated when necessary.

Petr Vilim, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12,2015 15.2/32

W Rating the choices

For each choice ¢ we maintain:

» Rating of positive branch: rating*[c]

» Rating of negative branch: rating™[c]

» Rating of the choice: rating[c] := rating™[c] + rating™[c]
Design of the ratings

» Lower number means better rating.

» Ratings prefer choices that fails often or propagate a lot.

Petr Vilim, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling

July 12,2015 16/32

W Computation of ratings

When a branch of a choice is taken:

0
localRating := {

if the branch fails immediately
1+ R otherwise

Where R € (0, 1] is a measure of reduction done by propagation

Petr Vilim, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling

July 12,2015 17.1/32

[lm]]
[H]
;jiil
Q-

W Computation of ratings

When a branch of a choice is taken:
. 0 if the branch fails immediately
localRating := ,
1 +R otherwise

Where R € (0, 1] is a measure of reduction done by propagation.

Update rating of choice branch:
localRating

H +/= . . H +/= _ _
rating” " [c] := a - rating” " [c] + (1 — @) avgRatingld]

Where:
» a €[0.9,0.99] is a constant controlling the speed of decay.
» avgRating[d] is average rating on current depth d.

Petr Vilim, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12,2015 17.2/32

[lm]]
[H]
;jiil
Q-

W Computation of ratings

When a branch of a choice is taken:
. 0 if the branch fails immediately
localRating := ,
1 +R otherwise

Where R € (0, 1] is a measure of reduction done by propagation.

Update rating of choice branch:
localRating

H +/= . . H +/= _ _
rating” " [c] := a - rating” " [c] + (1 — @) avgRatingld]

Where:
» a €[0.9,0.99] is a constant controlling the speed of decay.
» avgRating[d] is average rating on current depth d.

Update rating of the choice:
rating[c] := rating*[c] + rating”[c]

Petr Vilim, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12,2015 17.3/32

W Search algorithm

DFS, Always decide the choice with the best rating.

Petr Vilim, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12,2015 18.1/32

W Search algorithm

DFS, Always decide the choice with the best rating.

Heap of
unchecked
choices

Petr Vilim, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12,2015 18.2/32

W Search algorithm

DFS, Always decide the choice with the best rating.

Heap of
unchecked
choices

best unchecked

Petr Vilim, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12,2015 18.3/32

W Search algorithm

DFS, Always decide the choice with the best rating.

Heap of
unchecked
choices

best unchecked

applicable

Decide,
update rating

Petr Vilim, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12,2015 18.4/32

W Search algorithm

DFS, Always decide the choice with the best rating.

Heap of
unchecked
choices

best unchecked

Choice Stack
applicable
. Decide,
decided update rating

Petr Vilim, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12,2015 18.5/32

W Search algorithm

DFS, Always decide the choice with the best rating.

Heap of
unchecked
choices

best unchecked

Choice Stack
< Check
resolved
applicable
. Decide,
decided update rating

Petr Vilim, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12,2015 18.6/32

W Search algorithm

DFS, Always decide the choice with the best rating.

Heap of
unchecked

choices
negate the last

choice after backtrack

best unchecked

Choice Stack
~ resolved
applicable
. Decide,
decided update rating

Petr Vilim, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015

18.7/32

W Decide presence status first

For optional interval variables, if we branch on time before
branching on presence status then part of the search tree may do

duplicate work:

startOf(x) > 10 startOf(x) < 10

i AN

presence0f(x) presence0f(x)

! presence0f(x)

!presence0f(x)

Duplicity

Petr Vilim, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 19/32

W Search algorithm

DFS, Always decide the choice with the best rating.

Heap of
unchecked

choices
negate the last

choice after backtrack

best unchecked

Choice Stack
~ resolved
applicable
. Decide,
decided update rating

Petr Vilim, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015

20.1/32

W Search algorithm

DFS, Always decide the choice with the best rating.

Heap of
unchecked

choices
negate the last

choice after backtrack

best unchecked

Choice Stack
waiting iti
< Check Wa|.t e
resolved choices
applicable
. Decide,
decided update rating

Petr Vilim, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015

20.2/32

[ln]
i
i
Q-

W Which branch of the choice try first?

The one with better rating

» It is more likely to fail then to other branch.
» |t heads towards failures and not to a solution.

Why?
» It is faster (on infeasible models).

And why?

» See later.

Petr Vilim, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12,2015 21/32

w More ingredients

v

Geometric restarts by 15% and nogoods.

v

Initialize ratings by trying all choices in the root node.
Strong branching and shaving.

» In root node, evaluate multiple choices before committing to
one.

» Exploit failures and same propagations in both branches.
Couple FDS with LNS.
Maximum propagation available in CP Optimizer.
Randomization.

v

v

v

\4

Petr Vilim, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12,2015 22/32

Experimental results

W Experimental setup

Our goal:

» Show that FDS is generic and works well as “plan B” LNS.
» Show that it is comparable with state of the art.

» = evaluate on open benchmark instances (more than 1500).

Petr Vilim, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling

July 12,2015 24.1/32

W Experimental setup

Our goal:

» Show that FDS is generic and works well as “plan B” LNS.
» Show that it is comparable with state of the art.

» = evaluate on open benchmark instances (more than 1500).
Attack upper bounds:

» Solve the problem using two threads: LNS + FDS.

» Time limit 10 minutes up to 8 hours 20 minutes.

Petr Vilim, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling

July 12,2015 24.2/32

W Experimental setup

il
Q-

Our goal:

» Show that FDS is generic and works well as “plan B” LNS.
» Show that it is comparable with state of the art.

» = evaluate on open benchmark instances (more than 1500).
Attack upper bounds:

» Solve the problem using two threads: LNS + FDS.
» Time limit 10 minutes up to 8 hours 20 minutes.

Attack lower bounds:

» Use 1 thread running FDS only.

» Start with bestLB — 1 and continue up if infeasible.
» Time limit 5..10 minutes per step.

Petr Vilim, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015

24.3/32

W Experimental results

of Lower bound Upper bound Closed

Benchmark set instances improvements improvements instances
JobShop 48 40 3 15
JobShopOperators 222 107 215 208
FlexibleJobShop 107 67 39 74
RCPSP 472 52 1 0
RCPSPMax 58 51 23 1
MultiModeRCPSP (j30) 552 No reference 3 535
MultiModeRCPSPMax 85 84 77 85

Petr Vilim, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 25/32

Why it works well?

Analyzing behavior of the search.

‘l Search tree

@ Inner node

@ Fail

‘

Petr Vilim, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 27.1/32

11 Search tree

@ Inner node

@ Fail

Petr Vilim, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12,2015 27.2/132

a Why it (probably) works

2-fails 1 -fail
(closing choice) -al

SO ‘/\/\ /< /

Closing choices:

0-fail

» Mandatory to close a branch.
» Strongly preferred by rating system.

» Rating of a closing choice immediately improves
> Likely to be drawn again

1-fail choices:

» Does not increase number of open branches.
» 2-fails choices recruit from 1-fail choices.
» Not a big harm to repeat it.

Petr Vilim, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling

July 12,2015 28/32

11 Search tree

@ Inner node

@ Fail

Petr Vilim, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12, 2015 29/32

@ Why less promising branch first?

Assuming hard infeasible model:

» It is not likely that current restart finishes the proof.

» What remains after restart is a nogood constraint.
» Shorter nogoods are easier to apply.

» Especially if left branch in root node was fully explored.
» Hope for cumulative effect of many short nogoods.

Traditional versus range branching on variable x € [0..1000]:
x=10 x# 10 x<10 x>10

Petr Vilim, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling

July 12,2015 30/32

W Case study

jobshop tail5e makespan < 1832

» Infeasible, proof takes 465s.

Petr Vilim, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12,2015 31.1/32

W Case study

jobshop tail5e makespan < 1832

» Infeasible, proof takes 465s.

Inverse branch order:
» Proof takes 1023s.

Petr Vilim, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling

July 12, 2015

31.2/32

W Case study

jobshop tail5e makespan < 1832
» Infeasible, proof takes 465s.
Inverse branch order:

» Proof takes 1023s.

Don't prefer failures:

ocalR 0 if the branch fails immediately
ocalRating :=
T R

otherwise
» No proof in 24 hours.

Petr Vilim, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling

July 12, 2015 31.3/32

[ln]
i
i
Q-

W Case study

jobshop tail5e makespan < 1832

» Infeasible, proof takes 465s.

Inverse branch order:

» Proof takes 1023s.

Don't prefer failures:
0 if the branch fails immediately
localRating := .
R >< otherwise

» No proof in 24 hours.

Parallelism (since version 12.6.2):

» 317s using 2 workers (32% faster).

Petr Vilim, Philippe Laborie, Paul Shaw (IBM) Failure-directed Search for Constraint-based Scheduling July 12,2015 31.4/32

cn

obrl

&
N
=3
(@)}
@]

falaa Nandi

il

b

[]H[l

- - nqiyabonga

... (AN

dalni(atesﬂkkuredenm. =
lhan i -

% le ?ﬁuﬁf“ﬁa o ﬁﬁ;n =00 raith maih aga

aign Gankon 2610

wwedt MOCACHakkeram &

E“ n:mstuu lanemmg[azm 3Il!]a|[| = dak[]]ﬂﬂ] tigare:

3 folgh Shemyavatagaly Sﬂukﬂva £ Mepay

“:MeICI
Questions?

mhma

knze

leﬂk\

	Why we developed it
	Inspiration
	How it works
	Experimental results
	Why it works well?

