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Lazy clause generation and CP-based scheduling

●  Lazy Clause Generation:
– Analyze failures
– Dynamically (lazily) add constraints (clauses) to avoid failing again for the same reason
– Filtering algorithms not that important

[1]   Schutt, Feydy, Stuckey, Wallace: Solving RCPSP/max by lazy clause generation
                                                           Journal of Scheduling 2012
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noOverlap Constraint
(unary/disjunctive resource)

[1]   Vilím: Global Constraints in Scheduling, PhD thesis, 2007
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Propagation algorithms

 Overload Checking (fail detection)
– O(n): [Fahimi, Quimper]

 Edge-Finding 
– O(n log n): [Carlier & Pinson 1994],  [Vilím]
– O(n2): [Martin & Shmoys 96], [Wolf 2003], [Nuijten].

 Not-Fist/Not-Last 
– O(n2): [Baptiste & Le Pape 1996], [Torres & Lopez 1999], [Wolf 2003]
– O(n log n): [Vilím]

 Detectable Precedences
– O(n log n): [Vilím]
– O(n): [Fahimi, Quimper] 

 …

Each algorithm removes different type of inconsistent values, therefore they

can be used together to achieve better pruning.
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Fixpoint
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Example: no solution (overload)

Traditional explanation:

 Union of time windows of {B, C, D} is [25, 43], its length is 18.

 Total duration of {B, C, D} is 6 + 4 + 10 = 20.

 18 < 20 → no solution.

Leads to O(n2) algorithm.
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Example: no solution (overload)

Alternative explanation (leads to O(n log n) algorithm):

 Lets relax the problem by ignoring deadlines (all lcti = ∞).
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Example: no solution (overload)

Alternative explanation (leads to O(n log n) algorithm):

 Lets relax the problem by ignoring deadlines (all lcti = ∞).

 With this relaxation, what is earliest completion time of set {A, B, C, D}?
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Example: no solution (overload)

Alternative explanation (leads to O(n log n) algorithm):

 Lets relax the problem by ignoring all deadlines (assuming all lcti = ∞).

 With this relaxation, what is earliest completion time of set {A, B, C, D}?
– estB + pB + pC + pD = 25 + 6 + 4 + 10 = 45
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Example: no solution (overload)

Alternative explanation (leads to O(n log n) algorithm):

 Lets relax the problem by ignoring deadlines (all lcti = ∞).

 With this relaxation, what is earliest completion time of set {A, B, C, D}?
– estB + pB + pC + pD = 25 + 6 + 4 + 10 = 45

 But what is the deadline for {A, B, C, D}?
– lct{A,B,C,D} = max{lctA, lctB, lctC, lctD} = max{28, 36, 42, 43} = 43

 43 > 45 → no solution.
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What is the difference?

 Classical explanation does not detect a problem for set {A, B, C, D}.
– It have to check also subset {B, C, D} to recognize infeasibility.
– There is O(n2) sets to check this way

• One set for every combination of estX and lctY.

 Alternative explanation correctly recognize problem for {A, B, C, D}.
– There is O(n) sets to check this way

• One for every lctY.

However, how to compute earliest completion times effectively?
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Lets get more formal

 Let Ω is a set of activities.
– Earliest start time of Ω is estΩ = min{esti, i Ω}∊
– Latest completion time of Ω is lctΩ = max{lcti, i Ω}∊
– Total duration of Ω is pΩ = sum{pi, i Ω}∊

 For Ω = {B, C, D}:
– estΩ = 25
– lctΩ = 43
– pΩ = 20
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Lets get more formal

 Let Ω is a set of activities.
– Earliest start time of Ω is estΩ = min{esti, i Ω}∊
– Latest completion time of Ω is lctΩ = max{lcti, i Ω}∊
– Total duration of Ω is pΩ = max{lcti, i Ω}∊

 Earliest completion time of (another set of activities) Θ is:

 For Θ = {A, B, C, D} the best Ω is {B, C, D} and ECTΘ = 25 + 20 = 45.
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Overload rule

45 43
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Computation of earliest completion time

 The goal is to quickly recompute ECTΘ 
after a change of Θ such as:

– addition of an activity into Θ
– removal of an activity from Θ

 The idea: represent Θ by a binary tree.
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Θ-Tree

 Activities are represented by 
leaves

– sorted by esti

 Each node holds:
– ∑P: total duration of 

activities in the subtree
– ECT: earliest completion 

time of the subtree

 ECT of Θ is in the root node.

Activities
sorted by esti
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Θ-Tree: recursive computation
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Θ-Tree: recursive computation
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Θ-Tree: time complexities
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Overload checking algorithm

Time complexity is O(n log n).
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Example of implementation of Θ-Tree

 Tree is stored in an array (similar to array representation of a heap).

 Tree doesn't change its shape. Instead of node addition/removal nodes are turned on/off.

 Node turned off:
– ∑P = 0
– ECT = -∞

x x x x

All activities
sorted by esti

Unused

Activity is not in Θ

All activities
sorted by esti

Internal 
nodes

Root
node
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Edge Finding

 Edge finding improve bounds by removing values that would lead to overflow.

 Scheduling activity C before 18 would lead to overflow.
– estC := 18
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Edge Finding

 Remember the overflow rule:

 Edge finding rule is:

 Setting lctΘ as deadline for activity i would cause overflow.
– Therefore i can start only after all activities from Θ finish.
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Edge Finding: idea of the algorithm

 Consider some deadline t.

 Θ = all activities that must finish before t.

 Λ = all activities that can start before t but can 
finish after t.

 If we can add one activity from Λ into Θ, how 
big earliest completion time we can make?

 Is it bigger than t?

 If yes, activity we used from Λ can be updated 
and removed from Λ.

 for example t = lctD = 18

 Θ = {D, E, F}

 Λ = {C}                                      
     

 ECT{C,D,E,F} = 19                       
           

 Yes: 19 > 18

 estC := 18
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Θ-Λ-Tree
The concept of Θ-tree is extended to compute:
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Θ-Λ-Tree: time complexities
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Edge Finding algorithm

Time complexity is O(n log n).
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Symmetry

 Just presented algorithm updates only esti, not lcti.

 Algorithm to update lcti is symmetrical.

 There are two ways to implement it:
– Write the algorithm twice (“forward” and “backward” versions).
– Write the algorithm only once but feed it with symmetrical data.

Decision variables

Symmetry interface (switch)

Edge Finding algorithm
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Not-First / Not-Last

 Let Θ = {A, B}. 

 ECTΘ = ectA + pA + pB = 0 + 11 + 10 = 21

 If Θ is scheduled before C then Θ would have to end before lctC – pC = 20 – 2 = 18
– This is not possible because 21 > 18

 At least one activity from Θ must be after C.

 lctC ≤ max(lctA – pA, lctB – pB) = 17

Propagation rule:
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Not-Last algorithm

Time complexity is O(n log n).
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Detectable precedences

 C doesn't fit before B. Therefore B is before C: B«C

 Similarly, C doesn't fit before A. Therefore A is before C: A«C

 {A, B}«C therefore C cannot start before ECT{A,B} = 10.
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Detectable precedences

 Detectable precedence:

The algorithm:

 Take an activity i

 Let Θ are detectable predecessors of i: Θ = {j, j«i}.

 Then i cannot start before ECTΘ.
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Detectable Precedences algorithm

Time complexity is O(n log n).
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Cumulative Resources
Timetable Edge Finding

[1]   Vilím: Timetable Edge Finding Filtering Algorithm for Discrete Cumulative Resources, CPAIOR 2011



© 2015 IBM Corporation35

Cumulative Resource
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Filtering Algorithms for Cumulative Resource

Classical Filtering Algorithms:

 Timetable propagation

 Edge Finding:

– O(kn2)

– O(kn log n)

 Extended Edge Finding
– O(kn2)

 Not-First / Not-Last
– O(n2 log n), lazy

 Energetic Reasoning
– O(n3)

These algorithms are independent and 
could/should be used together.

Timetable Edge Finding:

 Inspired by all the algorithms on the left.

 Meant to be used together with timetable 
propagation.

 Reuses/shares data structure with 
timetable propagation.

 Stronger propagation than both Edge 
Finding and Extended Edge Finding.

 Limited Not-First / Not-Last and Energetic 
Reasoning.

 O(n2)

 Lazy propagation: may need more 
iterations to reach fixpoint.
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Timetable Propagation
 If for activity i holds lcti – pi < esti + pi then the activity necessarily use the 

resource during interval [lcti – pi , esti + pi].

 In this case we split the interval into fixed and free parts:

 Fixed parts are aggregated into timetable (graph of minimum resource usage):

 The timetable is used to improve bounds of activities.
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Overload Checking

 Similar to disjunctive case. O(n2) and O(n log n) versions.

 It is the cornerstone of all Edge Finding algorithms.

 The idea is to chose an interval [X, Y] and compare:

Available energy (area) in interval [X, Y]: Total energy of activities which must 
be completely inside [X, Y]:
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Standard and Extended Edge Finding Algorithms

 In this example, estD can be updated from 0 to 4.

 Otherwise, either interval [0, 5] or [2, 5] would be overloaded.

Informally speaking, these algorithms update time windows in such a way that scheduling 
any activity i on its earliest starting time esti does not lead to immediate overload.
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Energetic Reasoning Algorithm

 Energy computation in Edge Finding takes into account only activities which are completely 
inside the interval [X,Y].

 Therefore it misses cases when only a part of the activity must be executed inside [X, Y]. For 
example, activity i in the following picture consumes at least 3 energy units during [1, 5]:

 There is Energetic Reasoning algorithm, which takes this energy into account, but it is O(n3).

 However there are some simple cases where we can improve energy computation without 
increasing time complexity.

 In particular, the idea is to take into account timetable.
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Timetable Edge Finding

The idea is to split energy computation during [X, Y] into two parts: 

energy from fixed parts

This energy can be easily computed from 
timetable:

energy from from free parts

Computed by standard Edge Finding way, 
but only from free parts:
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Example of energy computation

What is the minimal energy contribution of activity i to interval [1, 5]?

 Energetic reasoning: 3
– Exact computation, but slow.

 Edge Finding: 0
– Activity i is not completely inside [1, 5] therefore it is ignored.

 Timetable Edge Finding: 2 (from fixed part)
– Fast, but not exact.
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Example of energy computation

Timetable Edge Finding splits activity i into two fixed part (duration 2) and free part 
(also duration 2):

For interval [1,5], TTEF takes fixed part into account, but ignores free part (because it 
is not completely inside [1,5]). Total contribution counted is 2 energy units.

Note that for fixed activities, TTEF computes the same value as Energetic Reasoning.
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Timetable Edge Finding algorithm

Time complexity is O(n2).
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Propagation with optional interval variables

[1]   Laborie, Rogerie: Reasoning with Conditional Time-intervals. FLAIRS-08.
[2]   Laborie, Rogerie: Reasoning with Conditional Time-intervals, 
                                   Part II: an Algebraical Model for Resources. FLAIRS-09. 
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Alternatives

Let activity C represents my travel to visit a customer. I can travel by:

 train

 plane

 or car.

This decision affects:

 duration

 departure time

 cost

 resource usage

Traditionally/historical way is to use meta-constraints to describe the problem:

 Either (train) duration = 8h and departure in {9:00, 13:40, .. } and cost = 170€

 Or (plane) duration = 3h and departure in { 9:20, 12:30, .. } and cost = 250€

 Or (car) duration = 11h and cost = 200€

                       C

Alternative

C: Train

C: Plane

C: Car
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Alternatives: new approach

The idea is to represent not only C as activity, but also its alternatives (modes).

                       C

Alternative

C: Train

C: Plane

C: Car

 C is present activity.

 Its alternatives are optional 
activities.

 Optional activities doesn't have 
to appear in the schedule.

 If they don't appear then their 
start is undefined.

The solver must make a decision which one of the activities C:Train, C:Plane and C:Car will be 
present in the solution. The remaining two activities will be absent.
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Optional Interval Variable

Optional Interval Variable a:

                        Domain(a)  {}  { [s,e) | s,e, s≤e }

In the model declaration, each interval variable must be either:
– present (mandatory, is not in the domain)
– absent (domain is {
– optional otherwise

In a solution, each interval variable must be either:
– present, then it starts at time s and ends at time e,
– or absent (), and then it doesn't have any start or end.

Notations: Let a be a fixed interval variable:
– If a={[s,e)} (a is present) then we denote:

• x(a)=1   : presence status
• s(a)=s   : start of a 
• e(a)=e   : end of a

– If a={} (a is absent), we denote:
• x(a)=0 (in this case, s(a) and e(a) are meaningless)

Absent interval Interval of integers
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Semantics of the alternative constraint
alternative(C, {C:Train, C:Plane, C:Car})

 If C is present then:
– Exactly one of C:Train, C:Plane, C:Car is 

present.
– C and the chosen alternative start together 

and end together.

 If C is absent then C:Train, C:Plane and C:Car 
are also absent.

             C

C: Train

C: Plane

C: Car

Alternative
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Semantics of alternative constraint
alternative(C, {C:Train, C:Plane, C:Car})

 If C is present then:
– Exactly one of C:Train, C:Plane, C:Car is 

present.
– C and the chosen alternative starts together 

and end together.

 If C is absent then C:Train, C:Plane and C:Car 
are also absent.

This allows to easily constraints both on master interval C and its modes like C:Car.

After arrival, I'll check in to the hotel:
– endBeforeStart(C, HotelCheckin)

I have to be there by 14 o'clock:
– endOf(C) ≤ 14

If I use plane then I have to buy tickets at least 10 days ahead:
– presenceOf(BuyPlaneTickets) = presenceOf(C:Plane)
– endsBeforeStart(BuyPlaneTickets, C, 10)

Car is a disjunctive resource that cannot be used by more than one driver at a time:
– noOverlap([C:Car, TravelOfMyWife1, TravelOfMyWife2, TravelOfMyWife3]);



             C

C: Train

C: Plane

C: Car

Alternative
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Propagation of alternative constraint
alternative(C, {C:Train, C:Plane, C:Car})

 For optional activities, we maintain their time 
window [esti, lcti] for the case they will become 
present.

 For example:
– estC:Train = 9:00 (first train)
– estC:Plane = 9:20 (first plane)
– estC:Car = 8:00 (I refuse to get up early)

 Earliest starting time of master activity C is the minimum of available alternatives:
– estC = 8:00

             C

C: Train

C: Plane

C: Car

Alternative
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Propagation of alternative constraint

 Earliest starting time of master activity C is the minimum of available alternatives:
– estC = 8:00

 My wife occupies the the car until 15:00 (present interval variable).
–  noOverlap constraint propagates: estC:Car = 15.

 But that's too late (I have to be there by 14:00): lctC:Car ≤ lctC = 14.
– Therefore C:Car becomes absent.
– If C:Car wouldn't be optional then it would mean a fail.

 As a result, alternative constraint propagates estC = 9:00.

             C

C: Train

C: Plane

C: Car

Alternative

alternative(C, {C:Train, C:Plane, C:Car})

 For optional activities, we maintain their time 
window [esti, lcti] for the case they will become 
present.

 For example:
– estC:Train = 9:00 (first train)
– estC:Plane = 9:20 (first plane)
– estC:Car = 8:00 (I refuse to get up early)
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How to handle optional activities in resource constraints?

The general rules are:

 Present activities influence all other activities on the resource including optional ones.
– My wife blocked the car, C:Car was updated.

 Absent activities are ignored.
– Once I decided not to use the car, car is not affected by my travel at all.

 Optional activities does not affect any other activity on the resource.
– While I was only speculating about using the car, I couldn't postpone ride of my wife.
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Disjunctive Edge Finding with optional activities

 Remember Edge Finding propagation rule:

 Set Θ cannot contain any optional (or absent) interval.
– Otherwise optional activity would affect activity i on the resource.

→ Never add optional activity into Θ.

 Note that i could be optional activity.
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Disjunctive Edge Finding with optional activities

 Remember Edge Finding propagation rule:

Another approach:

Use classical EF algorithm (unaware of optional activities) but pretend (just for the algorithm) 
that all optional activities have lcti = ∞.

– If optional activity I is in Θ then lctΘ = ∞ and therefore the inequality doesn't hold.

→ It is not necessary to write new version of EF algorithm.

 It works for cumulative Edge Finding too.
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Implementation of EF with optional activities

Optional decision variables

Interface for symmetry and optionality

Edge Finding algorithm

It works for Edge Finding, but not for (for example) Not-First / Not-Last.
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Logical Network

[1]   Laborie, Rogerie: Reasoning with Conditional Time-intervals. FLAIRS-08.
[2]   Laborie, Rogerie: Reasoning with Conditional Time-intervals, 
                                   Part II: an Algebraical Model for Resources. FLAIRS-09. 
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Logical constraints

Presence constraint presenceOf(a) means that a is present: x(a)=1

The constraint presenceOf(a) could be used in composed constraints 
(meta-constraints). For example:

– Same status: presenceOf(a)presenceOf(b)
– Incompatibility: presenceOf(a) != presenceOf(b)
– Implication: presenceOf(a) ≤ presenceOf(b)
– At least 2 present: presenceOf(a) + presenceOf(b) + presenceOf(c) ≥ 2
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Constraint Propagation: Logical network

A Logical network is in charge of handling a set of binary logical constraints 
that can be inferred from the model: 

Those binary logical constraints are identified during presolve. For example:
– presenceOf(a)  presenceOf(b) 
– alternative(a, [b1,…,bn]) implies presenceOf(bi)  presenceOf(a) 

The binary logical constraints are translated as implications:
[¬] presenceOf(a)  [¬] presenceOf(b)

Logical network allows:
– detecting infeasibilities
– detecting new implications between intervals
– fixing presence status of intervals
– querying in O(1) whether presenceOf(a)presenceOf(b) for any (a,b)
– triggering events when the relation between two intervals changes
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Constraint Propagation: Logical network

 Logical network = Implication graph (as in 2-SAT)
– Nodes are literals representing the presence value of an 

interval or its negation (i.e. 2 nodes per interval variable).
– Arcs are implications

 Literals with equivalent status are merged

 Fixed literals are removed from the graph

 The logical network maintains the transitive closure of 
implication relation between literals
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Temporal Net

[1]   Laborie, Rogerie: Reasoning with Conditional Time-intervals. FLAIRS-08.
[2]   Laborie, Rogerie: Reasoning with Conditional Time-intervals, 
                                   Part II: an Algebraical Model for Resources. FLAIRS-09. 
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Precedence constraints

 Simple Precedence Constraints ti+z≤tj reified by presence statuses

 Example: endBeforeStart(a,b,z) means

x(a) x(b)  e(a) + z ≤ s(b)

 Complete set of precedence constraints:

startBeforeStart, startBeforeEnd

endBeforeStart, endBeforeEnd

startAtStart, startAtEnd

endAtStart, endAtEnd

 Presolve recognizes other ways to model precedences, for example:
endOf(a) <= startOf(b)
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Constraint Propagation: Temporal network

 Precedence constraints are aggregated in Temporal network

 Conditional reasoning. Suppose that a and b are optional.

 Propagation on the conditional bounds of a (would a be present) can assume that b will 
be present too, thus:

              emax(a)  min(emax(a), smax(b))

 Bounds are propagated even on interval variables with still undecided presence status.

a b

endBeforeStart(a,b): From Logical network

presenceOf(a)presenceOf(b)
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Constraint Propagation: Temporal network

 The temporal network is a directed graph where:
–  nodes are interval end points (start or end)
–  arcs are precedence constraints (with min delay)

 Let u and v be two interval end points and i(u),i(v) respectively denote 
the intervals of u and v

 An arc (u,v,duv) is said:

– active on v iff it can propagate on v, that is 
presenceOf(i(v))presenceOf(i(u))

– Active on u iff it can propagate on u, that is 
presenceOf(i(u))presenceOf(i(v))

u v



duv

u v



duv
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Constraint Propagation: Temporal network

 At root node, an adapted Bellman-Ford algorithm is run:
– Uses “active on source/target status” to propagate on interval conditional 

bounds
– Detects positive cycles between nodes with equivalent presence status

 Then, incremental propagation of each arc uses classical bound-
consistency

 The temporal network also computes the connected and strongly 
connected components (useful for the search)

u v


duv

w

dvwdwu




duv+dvw+dwu>0  !presenceOf(i(u))
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Constraint Propagation: Simple example

 Inspired from [Barták&Čepek 2007]

CollectMaterial (1)

GetTube

SawTube (30)

ClearTube (20)

BuyTube (40)

ALT

WeldTube (15)

AssemblePiston (5)

ShipPiston (0)

SawRod (10)

ClearRod (2)

WeldRod (15)

CollectKit (1)

AssembleKit (5)

Deadline=70

MakeTube
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Constraint Propagation: Simple example

 Inspired from [Barták&Čepek 2007]

CollectMaterial (1)

GetTube

SawTube (30)

ClearTube (20)

BuyTube (40)

ALT

WeldTube (15)

AssemblePiston (5)

ShipPiston (0)

SawRod (10)

ClearRod (2)

WeldRod (15)

CollectKit (1)

AssembleKit (5)

Deadline=70

MakeTube
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