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What can MDDs do for Combinatorial Optimization?

e Compact representation of all solutions to a problem
e Limit on size gives approximation

e Control strength of approximation by size limit

MDDs for Constraint Programming and Scheduling
e MDD propagation natural generalization of domain propagation
e Orders of magnitude improvement possible

MDDs for Discrete Optimization

e MDD relaxations provide upper bounds
e MDD restrictions provide lower bounds
e New branch-and-bound scheme

Many Opportunities: integrated methods, theory, applications,...
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Decision Diagrams lepper
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e Binary Decision Diagrams were introduced to compactly
represent Boolean functions  [Lee, 1959], [Akers, 1978], [Bryant, 1986]

e BDD: merge isomorphic subtrees of a given binary decision tree

e MDDs are multi-valued decision diagrams (i.e., for arbitrary
finite-domain variables)
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e Original application areas: circuit design, verification

e Usually reduced ordered BDDs/MDDs are applied
— fixed variable ordering
— minimal exact representation

e Recent interest from optimization community
— cut generation [Becker et al., 2005]
— 0/1 vertex and facet enumeration [Behle & Eisenbrand, 2007]
— post-optimality analysis [Hadzic & Hooker, 2006, 2007]
— set bounds propagation [Hawkins, Lagoon, Stuckey, 2005]

e |nteresting variant

— relaxed MDDs
[Andersen, Hadzic, Hooker & Tiedemann, CP 2007]
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e Exact MDDs can be of exponential size in
general

e Can we limit the size of the MDD and still have
a meaningful representation?

— Yes, first proposed by Andersen et al. [2007] :

Limit the width of the MDD (the maximum number
of nodes on any layer)

e Limited-width MDDs: main focus of this tutorial
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Suppressed Decision Diagrams lepper
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e Zero-suppressed BDD (0-BDD or ZDD)

— arc skips layers for which variables will take value O
e One-suppressed BDD (1-BDD)

— arc skips layers for which variables will take value 1
e Zero/one-suppressed BDD (0/1-BDD)

— arc skips layers for which variables will take value 0/1

/ N __ __ e Similarly suppressed
/ / MDDs can be defined
# / ﬁ e [  Will not be discussed in

detail, but methodology
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MDDs for Constraint Programming
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Constraint Programming applies
e systematic search and

e inference techniques

to solve combinatorial problems

Inference mainly takes place through:
e Filtering provably inconsistent values from variable domains
e Propagating the updated domains to other constraints

X+ Xy = X3

alldifferent(x,,x,,X3,%,)

X, € y[,z}, X, € 961%;!} Xy € ¢,3}, X, € {o,/}
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e Let C(X) be a constraint on variables X. Let D(x) denote
the domain of possible values for x in X.

e Constraint C(X) is domain consistent if for each x in X,
each v in D(x) belongs to a solution to C.

X1 % X,
X{ # Xg alldifferent(x,,x,,x;)

X5 % X3
X, € {2,3}, x, € {1,2,3}, x5 € {2,3}

e FEstablish domain consistency: Remove all inconsistent

values from the variable domains. »
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alldifferent(x,,X,,X3,%X,) (1)
X{+ X, + X329 (2)
x. € {1,2,3,4}

(1) and (2) both
domain consistent

List of all solutions to alldifferent:

X{ X, X3 X4
1 2 3 4

“————— Suppose we could
e T evaluate (2) on this list
324
4 3 2

1
. projection: D(x,) = {1,2,3,4}
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alldifferent(x,,X,,X3,%X,) (1)
X{+ X, + X329 (2)
x. € {1,2,3,4}

List of all solutions to alldifferent:

X; Xy X3 X4

v 2 3 41
“————— Suppose we could
v 2 4 31

v 3 2 4 1

evaluate (2) on this list

v 4 3 2 1
L. projection: D(x,) = {1}
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alldifferent(x,,X,,X3,%X,) (1)
X{+ X, + X329 (2)
x. € {1,2,3,4}

List of all solutions: use MDDs
X; Xy X3 Xg4
2 3 41

2 4 31
3241

4 3 2 1
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Motivation for MDD propagation lepper
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e All structural relationships among variables are
projected onto the domains

e Potential solution space implicitly defined by Cartesian
product of variable domains (very coarse relaxation)

We can communicate more information between
constraint using MDDs [Andersen et al. 2007]

e Explicit representation of more refined potential
solution space

e Limited width defines relaxed MDD
e Strength is controlled by the imposed width
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MDD-based Constraint Programming  1€pper
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e Maintain limited-width MDD

— Serves as relaxation
— Typically start with width 1 (initial variable domains)
— Dynamically adjust MDD, based on constraints

e Constraint Propagation

— Edge filtering: Remove provably inconsistent edges (those
that do not participate in any solution)

— Node refinement: Split nodes to separate edge information

e Search
— As in classical CP, but may now be guided by MDD
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Characterization of MDD Propagation lepper
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Domain consistency generalizes naturally to MDDs:

e Let C(X) be a constraint on variables X and let M be an
MDD on X

e Constraint Cis MDD consistent if for each arcin M,
there is at least one path in M that represents a
solution to C

Equivalent to domain consistency for MDD of width 1
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e Linear equalities and inequalities  [Hadzic et al., 2008]
[Hoda et al., 2010]

® Alld/fferent constraints [Andersen et al., 2007]
e Flement constraints [Hoda et al., 2010]
e Among constraints [Hoda et al., 2010]

e Disjunctive scheduling constraints [Hoda etal., 2010]
[Cire & v.H., 2011, 2013]

e Sequence constraints (combination of Amongs)
[Bergman et al., 2014]

e Generic re-application of existing domain filtering
algorithm for any constraint type [Hoda et al., 2010]
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Constraint Representation in MDDs lepper
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e For a given constraint type we maintain specific
‘state information’ at each node in the MDD

e Computed from incoming arcs (both from top and
from bottom)

e State information is basis for MDD filtering and for
MDD refinement
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First example: Among constraints lepper
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" Given a set of variables X, and a set of values S, a
lower bound ( and upper bound u,

Among(X, S, [ u):= (<3 (xeS)<u

“among the variables in X, at least [ and at most u
take a value from the set §”

" Applications in, e.g., sequencing and scheduling
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e Set of nurses N, who can work evening, day, or night
shift, or can have a day off: {e,d,n,0}

e Rules: Each nurse works

— at most 2 night shifts out of every 8 consecutive days,
— at least 22 work shifts out of every 30 consecutive days,

e Planning horizon: 80 days

* For each day i, we have fixed demand D, ; for each shift
s=e,d,n.

e Goal: Find a solution that meets demand and satisfies
all constraints.
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* Variables x; , : shift of nurse n on day i
D(Xi,n) = {eldlnlo}
e Constraints

meet demand: 3 (x,,=s) 2 D;; foralli,s

at most 2/8:  Among({x 1, {n}, O, 2)

i,n2e°*7’ |+7n

for all i=1,...,73, and n

at least 22/30: Among({x. }, {e,d,n}, 22, 30)

i,n2ec’ |+29,n

for alli=1,...,51, and n
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First example: Among constraints lepper
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" Given a set of variables X, and a set of values S, a
lower bound ( and upper bound u,

Among(X, S, [ u) = (<3 (xeS)<su

“among the variables in X, at least [ and at most u
take a value from the set §”

" Applications in, e.g., sequencing and scheduling
= WLOG assume here that X are binary and S = {1}
" Let’s develop an MDD propagation algorithm
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Example MDD for Among lepper
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State information:

X4 {0} {1} path length from top
and from bottom
X, y K y y
X
O O
& N A
@)

Exact MDD for Among({x,,X,,X3,X,},{1},2,2)
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MDD Filtering for Among Tepper
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Goal: Given an MDD and an Among constraint, remove all
inconsistent edges from the MDD

(establish MDD-consistency)

Approach:

e Compute path lengths from the root and from the sink to each
node in the MDD

e Remove edges that are not on a path with
length between lower and upper bound

[Hoda et al., CP 2010]
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0 01234 State: T U
________ 0 path lengths from top (T)
1 y and from bottom (U)
1 4
O ,/'// s 0; 1/213

What happens if we only
maintain bounds instead
of all path lengths?

Among({X11X2)X3IX4}){1}1212)

29



MDD Filtering for Among "lepper
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Goal: Given an MDD and an Among constraint, remove all
inconsistent edges from the MDD

(establish MDD-consistency)

Approach:

e Compute path lengths from the root and from the sink to each
node in the MDD

e Remove edges that are not on a path with
length between lower and upper bound

e Complete (MDD-consistent) version

— Maintain all path lengths; quadratic time

e Partial version (may not remove all inconsistent edges)
— Maintain and check bounds (longest and shortest paths); linear time



Node refinement for Among lepper
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For each layer in MDD, we first apply edge filter, and
then try to refine

" consider incoming edges for each node

" split the node if there exist incoming edges that are
not equivalent (w.r.t. path length)

" in other words, need to identify equivalence classes

Example:

= We will propagate Among({x,,X,,X3,%,},{1},2,2) through
a BDD of maximum width 3
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Experiments Tepper
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e Multiple among constraints
— 50 binary variables total

— 5 variables per among constraint, indices chosen from normal
distribution with uniform-random mean in [1..50] and stdev 2.5,
modulo 50 (i.e., somewhat consecutive)

— Classes: 5 to 200 among constraints (step 5), 100 instances per class

e Nurse rostering instances (horizon n days)
— Work 4-5 days per week
— Max A days every B days
— Min C days every D days
— Three problem classes

* Compare width 1 (traditional domains) with increasing widths



Multiple Amongs: Backtracks

backtracks width 4
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Multiple Amongs: Running Time
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Width 1 Width 4 Width 32
Size BT CPU BT CPU BT CPU
Class1 40 61,225 55.63 8,138 12.64 3 0.09
80 175175  442.29 5,025 44.63 11 0.72
Class2 40 179,743 173.45 17,923 32.59 4 0.07
80 179,743  459.01 8,747  80.62 2 0.32
Class3 40 91,141 84.43 5,148 9.11 /7 0.18
80 882,640 2,391.01 33,379 235.17 55  3.27
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1. Consider the constraint x # y for two finite-domain
variables x and y. Assume that x and y belong to a
set X of variables for which we are given a relaxed
MDD. Design an MDD propagator for x # .

2. Consider the following CSP:
X, €{0,1}, x, €{0,1,2}, x5 € {1,2}

X{ % Xy, Xy # X3, X{ # Xg

Apply filtering and refinement (using the
propagator from Exercise 1), starting from a
width-1 MDD, until the MDD represents all
solutions to the CSP.

40
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More exercises lepper
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3. Design an MDD propagator for the constraint
ricixi < b

where C;, b are constants and x; are finite-domain
variables. Can we establish MDD consistency in

polynomial time for this constraint (for an arbitrary
MDD defined on ;) ?

4. Suppose we have a system of linear constraints:
i=1Cijx; < b forj=1,.,m

How would you use the propagator from exercise 3 to
handle this system?
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